\qquad
\qquad
\qquad

10-8 Study Guide and Intervention Equations of Circles

Equation of a Circle A circle is the locus of points in a plane equidistant from a given point. You can use this definition to write an equation of a circle.

Standard Equation of a Circle	An equation for a circle with center at (h, k) and a radius of r units is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Example: Write an equation for a circle with center $(-1,3)$ and radius 6.
Use the formula $(x-h)^{2}+(y-k)^{2}=r^{2}$ with $h=-1, k=3$, and $r=6$.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Equation of a circle } \\
(x-(-1))^{2}+(y-(-3))^{2} & =6^{2} & & \text { Substitution } \\
(x+1)^{2}+(y-3)^{2} & =36 & & \text { Simplify. }
\end{aligned}
$$

Exercises

Write the equation of each circle.

1. center at $(0,0)$, radius 8 2. center at $(-2,3)$, radius 5
2. center at $(2,-4)$, radius 1
3. center at ($-2,-6$), diameter 8
4. center at $(3,-4)$, passes through $(-1,-4)$
5.

4. center at $(-1,-4)$, radius 2
6. center at origin, diameter 4
8. center at $(0,3)$, passes through $(2,0)$
10.

\qquad
\qquad
\qquad

10-8 Study Guide and Intervention (continued) Equations of Circles

Graph Circles If you are given an equation of a circle, you can find information to help you graph the circle.
Example: Graph $(x+3)^{2}+(y+1)^{2}=9$.
Use the parts of the equation to find (h, k) and r.
Rewrite $(x+3)^{2}+(y-1)^{2}=9$ to find the center and the radius.

$$
\begin{aligned}
{[x-(-3)]^{2}+(y-1)^{2} } & =3^{2} \\
\uparrow & \uparrow \\
(x-h)^{2}+(y-k)^{2} & =r^{2}
\end{aligned}
$$

So $h=-3, k=1$, and $r=3$. The center is at $(-3,1)$ and the radius is 3 .

Exercises

For each circle with the given equation, state the coordinates of the center and the measure of the radius. Then graph the equation.

1. $x^{2}+y^{2}=16$

2. $(x-2)^{2}+(y-1)^{2}=9$

3. $(x+2)^{2}+y^{2}=16$

4. $x^{2}+(y-1)^{2}=9$

Write an equation of a circle that contains each set of points. Then graph the circle.
5. $F(-2,2), G(-1,1), H(-1,3)$

6. $R(-2,1), S(-4,-1), T(0,-1)$

