RADIAN MEASURE

measure is the \qquad of the length of an arc
intercepted by a \qquad and the \qquad of the circle.

Given: $\mathrm{C}=2 \pi r$
If $r=1$, then $C=2 \pi(1)$ or $C=$ \qquad
Since 360° is one full rotation around the circle, then $360^{\circ}=$ \qquad
$\frac{1}{4}$ of the way around the circle is $\frac{1}{4}\left(360^{\circ}\right)=$ \qquad or $\frac{1}{4}(2 \pi)=$ \qquad .
$\frac{1}{2}$ of the way around the circle is $\frac{1}{2}\left(360^{\circ}\right)=$ \qquad or $\frac{1}{2}(2 \pi)=$ \qquad -
$\frac{3}{4}$ of the way around the circle is $\frac{3}{4}\left(360^{\circ}\right)=$ \qquad or $\frac{3}{4}(2 \pi)=$ \qquad .

RADIAN MEASURE

$\overline{\text { intercepted by a }}$
\qquad of the length of an arc
\qquad and the \qquad of the circle.

Given: $C=2 \pi r$
If $r=1$, then $C=2 \pi(1)$ or $C=$ \qquad
Since 360° is one full rotation around the circle, then $360^{\circ}=$ \qquad -
$\frac{1}{4}$ of the way around the circle is $\frac{1}{4}\left(360^{\circ}\right)=$ \qquad or $\frac{1}{4}(2 \pi)=$ \qquad -.
$\frac{1}{2}$ of the way around the circle is $\frac{1}{2}\left(360^{\circ}\right)=$ \qquad or $\frac{1}{2}(2 \pi)=$ \qquad -.
$\frac{3}{4}$ of the way around the circle is $\frac{3}{4}\left(360^{\circ}\right)=$ \qquad or $\frac{3}{4}(2 \pi)=$ \qquad -

To convert degrees to \qquad multiply by $\frac{\pi \text { radians }}{180^{\circ}}$

To convert radians to \qquad multiply by $\frac{180^{\circ}}{\pi \text { radians }}$

To convert degrees to \qquad multiply by $\frac{\pi \text { radians }}{180^{\circ}}$

To convert radians to \qquad multiply by $\frac{180^{\circ}}{\pi \text { radians }}$

