Area of Regular Polygons

In a regular polygon, the segment drawn from the center of the polygon perpendicular to the opposite side is called the \qquad In the figure at the right, $\overline{A P}$ is the apothem and $\overline{A R}$ is the radius of the circumscribed circle.

Area of a Regular Polygon	If a regular polygon has an area of A square units, a perimeter of P units, and an apothem of a units, then $A=\frac{1}{2} a P$.

Find the area of regular pentagon RSTUV if its perimeter is $\mathbf{6 0} \mathbf{c m}$.
First find the apothem.
The measure of central angle RAS is $\frac{360^{\circ}}{5}$ or 72°. Therefore, $m \angle R A P=36^{\circ}$. The perimeter is 60 , so $R S=12$ and $R P=6$.

$$
\begin{aligned}
& \tan m \angle R A P=\frac{R P}{A P} \\
& \tan 36^{\circ}=\frac{6}{A P} \\
& A P=\frac{6}{\tan 36^{\circ}} \\
& \quad \approx 8.26
\end{aligned}
$$

So, $A=\frac{1}{2} a P=\frac{1}{2}(8.26)(60)$ or 247.8.

The area is about 248 square centimeters.
Given: $P=24 \sqrt{3} \mathrm{~m}$

Given: $P=72$ in
Given: $P=48 \mathrm{~cm}$

\qquad
$r=$ \qquad
$r=$ \qquad
$a=$ \qquad
$a=$ \qquad $a=$ \qquad
$P=$ \qquad $P=$ \qquad
\qquad
$A=$ \qquad
$A=$ \qquad
$A=$ \qquad

Area of Regular Polygons

In a regular polygon, the segment drawn from the center of the polygon perpendicular to the opposite side is called the \qquad In the figure at the right, $\overline{A P}$ is the apothem and $\overline{A R}$ is the radius of the circumscribed circle.

Area of a Regular Polygon	If a regular polygon has an area of A square units, a perimeter of P units, and an apothem of a units, then $A=\frac{1}{2} a P$.

Find the area of regular pentagon RSTUV if its perimeter is $\mathbf{6 0 \mathrm { cm }}$. First find the apothem.
The measure of central angle RAS is $\frac{360^{\circ}}{5}$ or 72°. Therefore, $m \angle R A P=36^{\circ}$.
The perimeter is 60 , so $R S=12$ and $R P=6$.

$$
\begin{aligned}
& \tan m \angle R A P=\frac{R P}{A P} \\
& \tan 36^{\circ}=\frac{6}{A P} \\
& A P=\frac{6}{\tan 36^{\circ}} \\
& \quad \approx 8.26
\end{aligned}
$$

So, $A=\frac{1}{2} a P=\frac{1}{2}(8.26)(60)$ or 247.8 .

The area is about 248 square centimeters.

Given: $P=72$ in

Given: $P=48 \mathrm{~cm}$

$r=$ \qquad
$a=$ \qquad
$P=$ \qquad
$A=$ \qquad $A=$ \qquad $A=$ \qquad

