\qquad
\qquad

$3^{\text {rd }}$ Quarter Review

1. Write the equation of a line that is parallel to $y=\frac{5}{2} x-1$ that passes through $(2,3)$.

$$
\begin{aligned}
& y-3=\frac{5}{2}(x-2) \\
& y-3=\frac{5}{2} x-5 \\
& +3 \\
& \hline y=\frac{5}{2} x-2
\end{aligned}
$$

2. Write the equation of a line that is perpendicular to $-5 x+2 y=10$ that passes through $(5,-1)$.

$$
\begin{array}{rlrl}
-5 x+2 y & =10 & y-(-1) & =-\frac{2}{5}(x-5) \\
+5 x & +5 y & y+1 & =-\frac{2}{5} x+2 \\
2 y & =5 x+10 & y & =\frac{-1}{2} x+5
\end{array}
$$

3. Given $A(2,1), B(3,4), C(7,3)$, and $D(7,2)$, find the image resulting from the transformation $(x, y) \rightarrow(-2 x+9,2 y-5)$. Draw the preimage and image.

$$
\begin{aligned}
& A^{\prime}=(5,-3) \\
& B^{\prime}=(3,3) \\
& C^{\prime}=(-5,1) \\
& D^{\prime}=(-5,-1)
\end{aligned}
$$

4. Draw the preimage and image of a figure with the vertices $A(-6,-9), B(-8,-6), C(-5,-4)$, and $D(-3,-7)$ under a dilation with a scale factor of 2 and a center of dilation of $P(-9,-9)$. List the coordinates of the image.

$$
\begin{aligned}
& A^{\prime}=(-3,-9) \\
& B^{\prime}=(-7,-3) \\
& C^{\prime}=(-1,1) \\
& D^{\prime}=(3,-5)
\end{aligned}
$$

5. Give a counterexample for this conditional statement: If a number has an absolute value of 5 , then the number is 5 .

$$
-5
$$

6. Give a counterexample for this conditional statement: If a fraction can be reduced, then its numerator and denominator are even.

$$
\frac{9}{27}\left(\text { any odd } \frac{\text { odd }}{\text { odd }} \text { sample that }\right) \text {) }
$$

Name the given angle pairs, and state if they are congruent or supplementary.

7. Angles 1 and 2 linear pair $=180^{\circ}$
8. Angles 1 and 4 vertical pair \cong
9. Angles 1 and 5 corresponding $\angle s \cong$
10. Angles 1 and 8

alternate
 exterior $\angle S \cong$

11. Angles 1 and 7 same side exterior $\angle s=180^{\circ}$
12. Angles 3 and 5 same side interior $\angle s=180^{\circ}$
13. Angles 3 and 6 alternate interior $L S \cong$
14. Fill in the triangle congruency reason for number 4.

Statements	Riven: $\overline{B C} \cong \overline{C D}$
$A C$	bisects $\angle B C D$
Prove: $\triangle A B C \cong \triangle A D C$	

15. Can these triangles be proven similar by AA? if so, write a similarity statement.

YES or NO

16. Determine the measure of side x to the nearest hundredth.

$$
\begin{aligned}
\cos 41^{\circ} & =\frac{x}{32} \\
32 \cos 41^{\circ} & =x \\
24.15 & =x
\end{aligned}
$$

17. Determine the measure of angle x to the nearest tenth.

$$
\begin{aligned}
& \sin x^{\circ}=\frac{9}{25} \\
& x^{\circ}=\sin ^{-1}\left(\frac{9}{25}\right) \\
& x^{\circ}=21.1^{\circ}
\end{aligned}
$$

18. Find the length of x and y. Express your answer in radical form.

$$
\frac{x \sqrt{2}}{\sqrt{2}}=\frac{9}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{9 \sqrt{2}}{2}
$$

19. Find the length of x and y. Express your answer in radical form.

$$
5 \sqrt{3} \cdot \sqrt{3}=5 \cdot 3=15=x
$$

$$
2(5 \sqrt{3})=10 \sqrt{3}=y
$$

20. Find $m \angle A E B$.

$$
\begin{gathered}
\frac{1}{2}(80+70)= \\
\frac{1}{2}(150)= \\
75^{\circ}
\end{gathered}
$$

21. Find x.

$$
\begin{aligned}
4 \cdot 3 & =6 x \\
12 & =6 x \\
2 & =x
\end{aligned}
$$

22. Find $\mathrm{m} \angle A B C$.

$$
\begin{aligned}
& \frac{1}{2}(60)= \\
& 30^{\circ}
\end{aligned}
$$

23. Find $\mathrm{m} \angle \mathrm{DEF}$.

$$
\begin{gathered}
\frac{1}{2}(120)= \\
60^{\circ}
\end{gathered}
$$

24. Find $m \angle A C D$.

$$
\begin{gathered}
\frac{1}{2}(201-45)= \\
\frac{1}{2}(156)= \\
78^{\circ}
\end{gathered}
$$

25. Find y.

$$
\begin{aligned}
& y^{2}=4(4+5) \\
& y^{2}=4(9) \\
& y^{2}=36 \\
& y=6
\end{aligned}
$$

26. Find $m \angle E F G$.
$\frac{1}{2}(285-75)=$

27. Find $m \angle A B C$.
central angle
125°
28. Find $\mathrm{m} \angle \mathrm{J} N$.

$$
\begin{aligned}
& \frac{1}{2}(170-20)= \\
& \frac{1}{2}(150)= \\
& 75^{\circ}
\end{aligned}
$$

29. Find z.

$$
\begin{aligned}
8(8+10) & =10(10+z) \\
144 & =100+10 z \\
44 & =10 z \\
4.4 & =z
\end{aligned}
$$

30. Fill in the blanks: Radian measure is the ratio of the length of an arc intercepted by a central angle and the radius of the circle.
31. An angle has a measure of $\frac{2 \pi}{7}$ radians. A classmate says that a reasonable estimate for the degree measure of the angle is 103°. Do you agree? Explain.

$$
\frac{2 \pi}{7} \cdot \frac{180}{\not 1}=\frac{360}{7}=51.4^{\circ} \text { no }
$$

32. Find the radian measure of an angle of 300°.

33. What is the equation of a circle with center at the origin and radius r ?

$$
x^{2}+y^{2}=r^{2}
$$

34. Write the equation for a circle with center $(-1,3)$ and radius 6 .

$$
\begin{aligned}
& (x--1)^{2}+(y-3)^{2}=6^{2} \\
& (x+1)^{2}+(y-3)^{2}=36
\end{aligned}
$$

35. Write the equation for the circle below.

36. A parallelogram has vertices $R(-2,-1), S(2,1)$, and $T(0,-3)$. Find all possible coordinates for the fourth vertex.

37. Find the coordinates of the intersection of the diagonals of parallelogram HJKL with the vertices $H(-1,4), J(3,3), K(3,-2), L(-1,-1)$.

$$
\begin{aligned}
M \overline{H K}= & \left(\frac{-1+3}{2}, \frac{4+-2}{2}\right)=(1,1) \\
M \overline{J L} & =\left(\frac{3+-1}{2}, \frac{3+-1}{2}\right)=(1,1) \\
& (1,1)
\end{aligned}
$$

Prove that if one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram. Answers for reasons 4,5 , and 7 will be questions $38,39,40$, respectively.

Given: $\overline{A B} \| \overline{D C}, \overline{A B} \cong \overline{D C}$
Prove: $A B C D$ is a parallelogram.

Proof:

Statement
Reason

1. $\overline{A B} \| \overline{D C}, \overline{A B} \cong \overline{D C}$
2. $\overline{D B} \cong D B$
3. $\angle 1 \cong \angle 2$
4. Reflexive Property
5. $\triangle A B D \cong \triangle C D B$
6. $\angle 3 \cong \angle 4$
7. $\overline{A D} \| \overline{B C}$
8. Alternate interior angles
9.
10.
11. $\angle A \cong \angle C, \angle B \cong \angle D$,
lines are II.
7.ABCD is a parallelogram. 7.
12. Reason \#4 above:
SAB
13. Reason \#5 above:

CPCTC

40. Reason \#6 above:

definition of parallelogram

41. Find the number of sides of a regular polygon whose interior angles each measure 108°.

$$
\begin{aligned}
108^{\circ} & =\frac{180(n-2)}{n} \\
108 n & =180 n-360 \\
-72 n & =-360
\end{aligned}
$$

42. Find the measure of each exterior angle of a regular hexagon.

$$
\frac{360^{\circ}}{6}=60^{\circ}
$$

43. Find the measure of each interior angle of a regular hexagon.

$$
\begin{aligned}
& \frac{180(6-2)}{6}=\frac{180(4)}{6}= \\
& \frac{720}{6}=120^{\circ}
\end{aligned}
$$

44. Ishmael makes the following conjecture:

- The diagonals of a parallelogram intersect at right angles.

Which of the parallelograms in the figure is a counterexample for Ishmael's conjecture?

I

II
45. Which of the following statements must be true?
I. The diagonals of a parallelogram are congruent.
II. A diagonal divides a square into two isosceles right triangles.

1II. A pair of base angles of an isosceles trapezoid are supplementary.
IV. If a quadrilateral has two congruent sides, then it has two congruent angles.
46.

Quadrilateral $P R O M$ is a parallelogram with $\overline{M R} \perp \overline{P O}$ and $\angle R O P$ complementary to $\angle P O M$.

Which of the following statements is true?
I. Quadrilateral $P R O M$ is a rhombus
II. Quadrilateral $P R O M$ is a square
III. Quadrilateral $P R O M$ is a rectangle

(also fine if all 3)

47. $A B C D$ is a rhombus with diagonals intersecting at point P. If $A(-1,8)$ and $P(2,2)$, what are the coordinates of C?

48. Which three points on the cube below will determine a plane such that the intersection between the plane and the cube is an isosceles trapezoid? Assume all labels are for vertices or midpoints.

a) $\mathrm{S}, \mathrm{C}, \mathrm{K}$
b) D, K, T
c) $\mathrm{T}, \mathrm{L}, \mathrm{S}$
d) S, J, K
49. State the congruence relation for $\triangle F L E$ and $\triangle F U E$.
a) ASA
b) AAA
c) SSA
d) SSS
e) not necessarily congruent

50. A tree breaks and falls as shown.

What was the original height of the tree?

$$
26+10=36 f t
$$

