

1. Write the equation of a line that is parallel to $y = \frac{5}{2}x - 1$ that passes through (2, 3).

> y-3===(x-2) Y-3=51x-5 +3 +3 [y=51x-2

2. Write the equation of a line that is perpendicular to -5x + 2y = 10 that passes through (5, -1).

from the transformation image resulting $(x, y) \rightarrow (-2x + 9, 2y - 5)$. Draw the preimage and image.

4. Draw the preimage and image of a figure with the vertices A(-6,-9), B(-8,-6), C(-5,-4), and D(-3,-7) under a dilation with a scale factor of 2 and a center of dilation of P(-9, -9). List the coordinates of the image.

5. Give a counterexample for this conditional statement: If a number has an absolute value of 5, then the number is 5.

-5

6. Give a counterexample for this conditional statement: If a fraction can be reduced, then its numerator and denominator are even.

(any odd example that) odd can be reduced

Name the given angle pairs, and state if they are congruent or supplementary.

8. Angles 1 and 4 vertical pair =

9. Angles 1 and 5 Corresponding LS ≃ 10. Angles 1 and 8 alternate exterior LS ≃

11. Angles 1 and 7 same side exterior 2s = 180°

12. Angles 3 and 5 same side interior Ls = 180°

13. Angles 3 and 6 alternate interior Ls =

14. Fill in the triangle congruency reason for number 4.

	Given: $\overline{BC} \cong \overline{CD}$ \overline{AC} bisects $\angle BCD$ Prove: $\triangle ABC \cong \triangle ADC$
Statements	Reasons
1. $\overline{BC} \cong \overline{CD}$	1. Given
2. ∠1 ≅ ∠2	2. An angle bisector is a ray whose endpoint is the vertex of the angle and divides the angle into two congruent angles.
3. $\overline{AC} \cong \overline{AC}$	3. Reflexive Property (a quantity is congruent to itself)
4. $\Delta ABC \cong \Delta ADC$	SAS

15. Can these triangles be proven similar by AA? If so, write a similarity statement.

16. Determine the measure of side x to the nearest hundredth.

17. Determine the measure of angle x to the nearest tenth.

18. Find the length of x and y. Express your answer in radical form.

19. Find the length of x and y. Express your answer in radical form. $\sum_{n=1}^{\infty} 30^{\circ}$

80

20. Find m∠AEB.

21. Find x.

4.3=6x 12 = 6x 2=×

22. Find m∠ABC.

23. Find m∠DEF. 120° 60° 24. Find m∠ACD. ± (201-45)= 2010 3 (156)= 780 25. Find y. $y^{2} = 4(4+5)$ $y^{2} = 4(9)$ $y^{2} = 36$ V = 6 26. Find m∠EFG. -1(285-75)= 15° H 285° 1 (210)= 105° **27.** Find m∠ABC. central angle 125° 28. Find m∠JLN. 10 75° 29. Find z. 8(8+10)=10(10+2) 144 = 100+102 44 = 10z

30. Fill in the blanks: Radian measure is the <u>ratio</u> of the length of an arc intercepted by a <u>central</u> angle and the <u>radius</u> of the circle.

31. An angle has a measure of $\frac{2\pi}{7}$ radians. A classmate says that a reasonable estimate for the degree measure of the angle is 103°. Do you agree? Explain.

$$\frac{271}{7} \cdot \frac{180}{7} = \frac{360}{7} = 51.4^{\circ}$$
 no

32. Find the radian measure of an angle of 300°.

$$5300^{\circ} \cdot \frac{11}{1300^{\circ}} = \frac{571}{3} \text{ radians}$$

33. What is the equation of a circle with center at the origin and radius r?

 $x^2 + \gamma^2 = r^2$

34. Write the equation for a circle with center (-1, 3) and radius 6. $(-1, -2)^2$

$$(x - -1) + (y - 3) = 6$$

 $(x + 1)^{2} + (y - 3)^{2} = 36$

35. Write the equation for the circle below.

36. A parallelogram has vertices R(-2, -1), S(2, 1), and T(0, -3). Find all possible coordinates for the fourth vertex.

37. Find the coordinates of the intersection of the diagonals of parallelogram HJKL with the vertices H(-1, 4), J(3, 3), K(3, -2), L(-1, -1).

Prove that if one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram. Answers for reasons 4, 5, and 7 will be questions 38, 39, 40, respectively.

Given: $\overline{AB} \parallel \overline{DC}, \overline{AB} \cong \overline{DC}$ **Prove:** ABCD is a parallelogram.

Proof:

Statement	Reason
1. AB II DC, ABEDC	1. Given
2. $\overline{DB} \cong \overline{DB}$	2. Reflexive Property
3.∠1≅∠2	3. Alternate interior angles
$4 \triangle ABD \cong \triangle CDB$	4.
5.∠3≅∠4	5.
	$6. \angle A \cong \angle C, \angle B \cong \angle D,$
6.AD DC	lines are .
7.ABCD is a parallelogram.	7.

38. Reason #4 above:

39. Reason #5 above:

CPCTC

40. Reason #6 above:

definition of parallelogram

41. Find the number of sides of a regular polygon whose interior angles each measure 108°.

108° = 180(n-2) 108n = 180n-360 -72n = -360

42. Find the measure of each exterior angle of a regular hexagon.

<u>360°</u> = 60°

43. Find the measure of each interior angle of a regular hexagon. 180(6-2) = 180(4) = 180(4)

(1) (<u>720</u> = 120°

44. Ishmael makes the following conjecture:

• The diagonals of a parallelogram intersect at right angles.

Which of the parallelograms in the figure above is a *counterexample* for Ishmael's conjecture?

below!

45. Which of the following statements must be true?

I. The diagonals of a parallelogram are congruent.

II. A

A diagonal divides a square into two isosceles right triangles.

- A pair of base angles of an isosceles trapezoid are supplementary.
- IV. If a quadrilateral has two congruent sides, then it has two congruent angles.

Quadrilateral *PROM* is a parallelogram with $\overline{MR} \perp \overline{PO}$ and $\angle ROP$ complementary to $\angle POM$.

Which of the following statements is true?

I. Quadrilateral *PROM* is a rhombus

II. Quadrilateral PROM is a square

III. Quadrilateral PROM is a rectangle

(also fine if all 3)

47. ABCD is a rhombus with diagonals intersecting at point P. If A(-1, 8) and P(2, 2), what are the coordinates of C?

48. Which three points on the cube below will determine a plane such that the intersection between the plane and the cube is an isosceles trapezoid? Assume all labels are for vertices or midpoints.

49. State the congruence relation for $\triangle FLE$ and $\triangle FUE$.

50. A tree breaks and falls as shown.

26+10=36ft

