Factorials and Circular Permutations

Key Concept n Factoria

For any positive integer n, n factorial is $n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$ and is written as $n!$. Zero factorial, or 0 !, is defined to be 1 .

Example $4!=4 \cdot 3 \cdot 2 \cdot 1=24$

Factorial Examples:

1) $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$
2) $\frac{10!}{5!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6=30,240$
3) $5!\times 6!=(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)=86,400$
4) You download 8 songs on your phone. If you play the songs using the random shuffle option, how many different ways can the sequence of songs be played?

$$
8!=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=40,320
$$

KeyConcept Circular Permutations
The number of distinguishable permutations of n objects arranged in a circle with no fixed reference point is

$$
\frac{n!}{n} \text { or }(n-1)!
$$

If the n objects are arranged relative to a fixed reference point, then the arrangements are treated as linear, making the number of permutations $n!$.

> JEWELRY If the 6 charms on the bracelet shown are arranged at random, what is the probability that the arrangement shown is produced?
> Since there is no fixed reference point, this is a circular permutation. So, there are $(6-1)$! or 5 ! distinguishable permutations of the charms. Thus, the probability that the exact arrangement shown is produced is $\frac{1}{5!}$ or $\frac{1}{120}$.
> DINING You are seating a party of 4 people at a round table. One of the chairs around this table is next to a window. If the diners are seated at random, what is the probability that the person paying the bill is seated next to the window?
> Since the people are seated around a table with a fixed reference point, this is a linear permutation. So there are 4 ! or 24 ways in which the people can be seated around the table. The number of favorable outcomes is the number of permutations of the other 3 diners given that the person paying the bill sits next to the window, 3! or 6 .

So, the probability that the person paying the bill is seated next to the window is $\frac{6}{24}$ or $\frac{1}{4}$.

You Try: Suppose 7 points on a circle are chosen at random. Using the letters A through E , how many ways can the points on the circle be named?

