Tangent Theorem: The tangent line (or segment, or ray) is
\qquad to the \qquad of the circle at the point of tangency. (Use this to solve right triangle problems with circles.)

Refer to $\odot \mathrm{C}$ with tangent $\overline{\mathrm{AB}}$.
Find x .
$\mathrm{x}=$ \qquad

Equivalent Tangent Theorem: If two segments from the same \qquad point are tangent to a circle, then they are \qquad .

Find x .
$\mathrm{x}=$ \qquad

When circles are inscribed in polygons, the polygons are said to be \qquad polygons. In such polygons, each side is \qquad to the circle.
$\triangle T R W$ is circumscribed about \odot A. If the perimeter of $\triangle T R W$ is $50, T K=3$, and $W M=9.5$, find TR.

TR = \qquad

If two \qquad angles of a circle or congruent circles intercept congruent arcs or the same arc, then the angles are \qquad _.

In circle $Q, m \overparen{S T}=68^{\circ}$.
Find the $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$.
$\mathrm{m} \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad

If an inscribed angle of a circle intercepts a angle.

Find x .
$\mathrm{x}=$ \qquad

If a quadrilateral is inscribed in a circle, then its \ldots angles are \qquad .

Quadrilateral QRST is inscribed in circle C. If $m \angle T=105^{\circ}$ and $\mathrm{m} \angle \mathrm{S}=97^{\circ}$, find $\mathrm{m} \angle \mathrm{Q}$ and $\mathrm{m} \angle \mathrm{R}$.
$\mathrm{m} \angle \mathrm{Q}=$ \qquad
$\mathrm{m} \angle \mathrm{R}=$ \qquad

