## CIRCLE SPECIAL SEGMENTS

## Intersection Inside the Circle

If two chords intersect inside a circle, the $\qquad$ of the measures of the segments of the chords are equal.
$T X \cdot X V=U X \cdot X W$
$T X=5$
XV $=8$
$U X=10$
XW = $\qquad$


## Intersection On the Circle

If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the $\qquad$ of the measure of the tangent segment is equal to the $\qquad$ of the measures of the secant segment and its external secant segment.
$J K^{2}=K M \cdot K L$
$\mathrm{KL}=3$
LM $=9$
$K M=$ $\qquad$


JK = $\qquad$

## Intersection Outside the Circle

If two secant segments are drawn to a circle from an exterior point outside the circle, the $\qquad$ of the measures of one secant segment and its external secant segment is equal to the of the measures of the other secant segment and its external secant segment.

DF • DE = DG • DH
DH = 8
DE $=6$
DG $=18$
DF = $\qquad$


## CIRCLE SPECIAL SEGMENTS

## Intersection Inside the Circle

If two chords intersect inside a circle, the $\qquad$ of
the measures of the segments of the chords are equal.
TX $\cdot \mathbf{X V}=\mathbf{U X} \cdot \mathbf{X W}$
TX = 5
XV = 8
$U X=10$
XW = $\qquad$


## Intersection On the Circle

If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the $\qquad$ of the measure of the tangent segment is equal to the $\qquad$ of the measures of the secant segment and its external secant segment.
$\mathrm{JK}^{2}=\mathbf{K M} \cdot \mathbf{K L}$
$K L=3$
$L M=9$
$K M=$ $\qquad$
JK = $\qquad$


## Intersection Outside the Circle

If two secant segments are drawn to a circle from an exterior point outside the circle, the $\qquad$ of the measures of one secant segment and its external secant segment is equal to the
$\qquad$ of the measures of the other secant segment
and its external secant segment.

DF • DE = DG • DH
DH = 8
DE $=6$
DG $=18$
DF = $\qquad$


