ARCS AND CHORDS

Theorem - In a circle (or congruent circles), two minor arcs are congruent if and only if their corresponding chords are congruent.
a) Which two chords are congruent? \qquad
b) What are the measures of their arcs? \qquad

Theorem - In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.
$\mathrm{AD} \perp \mathrm{BC}, \mathrm{AE}=7.5$, and the radius is 8.5 . Find the following.
$\mathrm{ED}=$ \qquad $E B=$ \qquad
$A C=$ \qquad EC = \qquad
$A B=$ \qquad
$B C=$ \qquad

Theorem - In a circle (or congruent circles), two chords are congruent if and only if they are equidistant from the center.

Find the values of x and y.
$x=$ \qquad

ARCS AND CHORDS

Theorem - In a circle (or congruent circles), two minor arcs are congruent if and only if their corresponding chords are congruent.
a) Which two chords are congruent? \qquad
b) What are the measures of their arcs? \qquad

Theorem - In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.
$A D \perp B C, A E=7.5$, and the radius is 8.5 . Find the following.
$E D=$ \qquad $\mathrm{EB}=$ \qquad
$A C=$ \qquad $\mathrm{EC}=$ \qquad
$A B=$ \qquad
$B C=$ \qquad

Theorem - In a circle (or congruent circles), two chords are congruent if and only if they are equidistant from the center.

Find the values of x and y.
$x=$ \qquad
$y=$ \qquad

