Equation of a Circle in Standard Form

MLeyCloncept: Equation of a Circle in Standard Form

The standard form of the equation of a circle with center at (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

The standard form of the equation of a circle is also called the center-radius form.

1. Write the equation of the circle graphed below.

2. Write the equation of a circle that has its center at $(-3,-2)$ and passes through $(1,-2)$
3. Strategically located substations are extremely important in the transmission and distribution of a power company's electric supply. Suppose three substations are modeled by the points $D(3,6), E(-1,1)$, and $F(3,-4)$. Determine the location of a town equidistant from all three substations, and write an equation for the circle.

Equation of a Circle in Standard Form

Mikylioncepl: Equation of a Circle in Standard Form

The standard form of the equation of a circle with center at (h, k) and radius r is $(x-m)^{2}+(y-k)^{2}=r^{2}$.

The standard form of the equation of a circle is also called the center-radius form.

1. Write the equation of the circle graphed below.

2. Write the equation of a circle that has its center at $(-3,-2)$ and passes through (1, -2).
3. Strategically located substations are extremely important in the transmission and distribution of a power company's electric supply. Suppose three substations are modeled by the points $D(3,6), E(-1,1)$, and $F(3,-4)$. Determine the location of a town equidistant from all three substations, and write an equation for the circle

