Equation of a Circle in Standard Form

1. Write the equation of the circle graphed below.

 	F		2	(3,	3)
		-	NINGER ALL	7	
 	0				x

2. Write the equation of a circle that has its center at (-3, -2) and passes through (1, -2).

3. Strategically located substations are extremely important in the transmission and distribution of a power company's electric supply. Suppose three substations are modeled by the points D(3, 6), E(-1, 1), and F(3, -4). Determine the location of a town equidistant from all three substations, and write an equation for the circle.

Equation of a Circle in Standard Form

1. Write the equation of the circle graphed below.

	1	2	(3,	3)
		 /		
•	0			x

2. Write the equation of a circle that has its center at (-3, -2) and passes through (1, -2).

3. Strategically located substations are extremely important in the transmission and distribution of a power company's electric supply. Suppose three substations are modeled by the points D(3, 6), E(-1, 1), and F(3, -4). Determine the location of a town equidistant from all three substations, and write an equation for the circle.

